What is the integral of #int (cos(x)/sin(x)-1)dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer A. S. Adikesavan Apr 17, 2016 #ln sin x - x + C# Explanation: Use #int u^'/(u) dx=ln u + C#. #int(cos x/(sin x)-x)dx=int((sin x)^'/(sin x)dx-x+C=ln sin x - x + C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1285 views around the world You can reuse this answer Creative Commons License