How do you integrate tanxsecx+cosx?

1 Answer
Aug 1, 2016

arctan(cosx)+C

Explanation:

We should first try to simplify the integrand.

tanxsecx+cosx=sinxcosx1cosx+cosx=sinxcosx(1cosx+cosx)=sinx1+cos2x

Thus:

tanxsecx+cosxdx=sinx1+cos2xdx

We can use substitution here. Let u=cosx. This implies that du=sinxdx.

=sinx1+cos2xdx=11+u2du

This is the arctangent integral!

=arctan(u)+C=arctan(cosx)+C