How do you integrate tanxsecx+cosx?
1 Answer
Aug 1, 2016
Explanation:
We should first try to simplify the integrand.
tanxsecx+cosx=sinxcosx1cosx+cosx=sinxcosx(1cosx+cosx)=sinx1+cos2x
Thus:
∫tanxsecx+cosxdx=∫sinx1+cos2xdx
We can use substitution here. Let
=−∫−sinx1+cos2xdx=−∫11+u2du
This is the arctangent integral!
=−arctan(u)+C=−arctan(cosx)+C