How do you find the integral of Cos(2x)Sin(x)dx?
1 Answer
Explanation:
Use the identity
=int(1 - 2sin^2x)sinxdx
Multiply out.
=int(sinx - 2sin^3x)dx
Separate using
=int(sinx)dx - int(2sin^3x)dx
The antiderivative of
=-cosx - 2int(1 - cos^2x)sinxdx
Let
=-cosx - 2int(1 - u^2)sinx * -(du)/sinx
The sines under the integral cancel each other out.
=-cosx - 2int(1 - u^2) * -(du)
Extract the negative
=-cosx + 2int(1 - u^2)du
Separate the integrals.
=-cosx + 2int1du - 2intu^2du
Integrate using the rule
=-cosx + 2u - 2(1/3u^(3)) + C
Resubstitute
=-cosx + 2cosx - 2/3cos^3x + C
Finally, combine like terms.
=cosx - 2/3cos^3x + C
Hopefully this helps!