What is the integral of sin^2(x)cos^4(x) sin2(x)cos4(x)?

1 Answer
Sep 4, 2016

1/192(12x+3sin2x-3sin4x-sin6x)+C1192(12x+3sin2x3sin4xsin6x)+C.

Explanation:

Let I=intsin^2xcos^4xdxI=sin2xcos4xdx.

We will use the following Identities to simplify the Integrand :-

[1] :2sin^2theta=1-cos2theta, [2] : 2cos^2theta=1+cos2theta[1]:2sin2θ=1cos2θ,[2]:2cos2θ=1+cos2θ

[3] : 2cosCcosD=cos(C+D)+cos(C-D)[3]:2cosCcosD=cos(C+D)+cos(CD)

Now, sin^2xcos^4x=1/8(4sin^2xcos^2x)(2cos^2x)sin2xcos4x=18(4sin2xcos2x)(2cos2x)

=1/8(2sinxcosx)^2(1+cos2x)=18(2sinxcosx)2(1+cos2x)

=1/8(sin2x)^2(1+cos2x)=18(sin2x)2(1+cos2x)

=1/8(sin^2 2x)(1+cos2x)=18(sin22x)(1+cos2x)

=1/16(2sin^2 2x)(1+cos2x)=116(2sin22x)(1+cos2x)

=1/16(1-cos4x)(1+cos2x)=116(1cos4x)(1+cos2x)

=1/16(1-cos4x+cos2x-cos4xcos2x)=116(1cos4x+cos2xcos4xcos2x)

=1/16{1-cos4x+cos2x-1/2(cos6x+cos2x)}=116{1cos4x+cos2x12(cos6x+cos2x)}

=1/32(2+cos2x-2cos4x-cos6x)=132(2+cos2x2cos4xcos6x)

:. I=1/32int(2+cos2x-2cos4x-cos6x)dx

=1/32(2x+sin(2x)/2-(2sin(4x))/4-sin(6x)/6)

=1/192(12x+3sin2x-3sin4x-sin6x)+C.

Enjoy Maths.!