How do you integrate {[(secx)^3] tanx} dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Ratnaker Mehta Aug 2, 2016 1/3sec^3x+C. Explanation: Let I=intsec^3xtanxdx, rewriting it as, I=intsec^2x(secxtanx)dx. Let us use subst. secx=t, so that, secxtanxdx=dt. Hence, I=intt^2dt=t^3/3=1/3sec^3x+C. Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 3487 views around the world You can reuse this answer Creative Commons License