What is int cot^2 (3-x)dx?

1 Answer
Jan 29, 2017

cot(3-x)-x+C

Explanation:

I=intcot^2(3-x)dx

Use the identity 1+cot^2(theta)=csc^2(theta) to say that cot^2(theta)=csc^2(theta)-1.

Then:

I=intcsc^2(3-x)dx-intdx

I=intcsc^2(3-x)dx-x

For the remaining integral, let u=3-x. This implies that du=-dx. Then:

I=-intcsc^2(u)du-x

This is a standard integral, since d/(du)cot(u)=-csc^2(u):

I=cot(u)-x

I=cot(3-x)-x+C