What is the integral of int [x * cos(x^2)](dx)[xcos(x2)](dx)?

1 Answer
Mar 19, 2016

=1/2sin(x^2)+C=12sin(x2)+C

Explanation:

Let
z=x^2z=x2
then
=>dz=2xdxdz=2xdx
substituting xdx=(dz)/2 and x^2=zxdx=dz2andx2=z
we have
I=1/2intcos(z)dz=1/2sinz +C=1/2sin(x^2)+CI=12cos(z)dz=12sinz+C=12sin(x2)+C