What is the integral of int [x * cos(x^2)](dx)∫[x⋅cos(x2)](dx)? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer P dilip_k · Jim H Mar 19, 2016 =1/2sin(x^2)+C=12sin(x2)+C Explanation: Let z=x^2z=x2 then =>dz=2xdx⇒dz=2xdx substituting xdx=(dz)/2 and x^2=zxdx=dz2andx2=z we have I=1/2intcos(z)dz=1/2sinz +C=1/2sin(x^2)+CI=12∫cos(z)dz=12sinz+C=12sin(x2)+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx∫cos5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt∫sin2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx∫(1+cos(x))2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx∫tan2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 33882 views around the world You can reuse this answer Creative Commons License