Evaluate the integral? : int_0^(pi/6) sinx/cos^2x dx
1 Answer
Sep 8, 2017
int_0^(pi/6) \ sinx/cos^2x \ dx = 2/sqrt(3) - 1
Explanation:
We seek:
I = int_0^(pi/6) \ sinx/cos^2x \ dx
We can perform a simple substitution:
Let
u=cosx => (du)/dx = -sinx
And we must change the limits of integration:
When
x= { (0), (pi/6) :} => u = { (1), (sqrt(3)/2) :}
So substituting into the integral, we get:
I = int_0^(pi/6) \ (-1)/cos^2x \ (-sinx) \ dx
\ \ = - int_1^(sqrt(3)/2) \ 1/u^2 \ du
\ \ = [1/u]_1^(sqrt(3)/2)
\ \ = 1/(sqrt(3)/2) - 1/1
\ \ = 2/sqrt(3) - 1