Evaluate the integral? : # int_0^(pi/6) sinx/cos^2x dx #
1 Answer
Sep 8, 2017
# int_0^(pi/6) \ sinx/cos^2x \ dx = 2/sqrt(3) - 1 #
Explanation:
We seek:
# I = int_0^(pi/6) \ sinx/cos^2x \ dx #
We can perform a simple substitution:
Let
#u=cosx => (du)/dx = -sinx #
And we must change the limits of integration:
When
# x= { (0), (pi/6) :} => u = { (1), (sqrt(3)/2) :}#
So substituting into the integral, we get:
# I = int_0^(pi/6) \ (-1)/cos^2x \ (-sinx) \ dx #
# \ \ = - int_1^(sqrt(3)/2) \ 1/u^2 \ du #
# \ \ = [1/u]_1^(sqrt(3)/2) #
# \ \ = 1/(sqrt(3)/2) - 1/1#
# \ \ = 2/sqrt(3) - 1 #