How do you find the integral of int (1 + cos x)^2 dx?

2 Answers
Mar 8, 2018

int(1+cosx)^2dx=1/4(6x+8sinx+sin2x)+"c"

Explanation:

First expand the integrand using the perfect square formula

int(1+cos^2x) dx=int1+2cosx+cos^2xdx

Then use the reduction formula on cos^2x to get it into an integrable form

int1+2cosx+cos^2xdx=int1+2cosx+1/2+1/2cos2xdx=int3/2+2cosx+1/2cos2xdx

Integrate each term using the power rule or standard integrals

int3/2+2cosx+1/2cos2x=3/2x+2sinx+1/4sin2x+"c"=1/4(6x+8sinx+sin2x)+"c"

Mar 8, 2018

int(1+cos x)^2 dx
=int(1+2cos x +cos^2 x) dx
=int(1+2cos x +(1/2cos 2x - 1/2) dx *
=int(1/2 + 2cos x + 1/2cos 2x) dx
=1/2x +2sin x +1/4sin 2x +c

*1 + 2cos^2 x = cos 2x
:. cos^2 x = 1/2cos 2x -1/2