How do you find the antiderivative of (cosx+secx)^2?
1 Answer
Mar 9, 2018
int \ (cosx+secx)^2 \ dx = sin(2x)/4 + 5/2x + tanx + C
Explanation:
We seek:
I = int \ (cosx+secx)^2 \ dx
Which we can write:
I = int \ cos^2x + 2cosxsecx + sec^2x \ dx
\ \ = int \ cos^2x + 2 + sec^2x \ dx
\ \ = int \ (cos(2x)+1)/2 + 2 + sec^2x \ dx
\ \ = int \ cos(2x)/2 + 5/2 + sec^2x \ dx
All integrand functions are standard results, so we can now readily integrate to get:
I = sin(2x)/4 + 5/2x + tanx + C