How do you find the antiderivative of (cosx+secx)^2?

1 Answer
Mar 9, 2018

int \ (cosx+secx)^2 \ dx = sin(2x)/4 + 5/2x + tanx + C

Explanation:

We seek:

I = int \ (cosx+secx)^2 \ dx

Which we can write:

I = int \ cos^2x + 2cosxsecx + sec^2x \ dx
\ \ = int \ cos^2x + 2 + sec^2x \ dx
\ \ = int \ (cos(2x)+1)/2 + 2 + sec^2x \ dx
\ \ = int \ cos(2x)/2 + 5/2 + sec^2x \ dx

All integrand functions are standard results, so we can now readily integrate to get:

I = sin(2x)/4 + 5/2x + tanx + C