Evaluate the integral int (sec 2x - 1)/(sec 2x + 1) dx ?

1 Answer
Jun 14, 2017

int \ (sec 2x - 1)/(sec 2x + 1) \ dx = tan x -x + c

Explanation:

Let:

I = int \ (sec 2x - 1)/(sec 2x + 1) \ dx

We can simplify the denominator by using the definition of secx

I = int \ (sec 2x - 1)/(sec 2x + 1) \ dx
\ \ = int \ (1/(cos 2x) - 1)/(1/(cos2x) + 1) \ dx
\ \ = int \ (1/(cos 2x) - 1)/(1/(cos2x) + 1) * (cos2x)/(cos2x) \ dx
\ \ = int \ (1-cos 2x)/(1+cos2x) \ dx

Using the identity cos2A -= cos^2 A - sin^2A we then have:

I = int \ (1+sin^2x-cos^2x)/(1+cos^2 x - sin^2x) \ dx

Using the identity sin^2A+cos^2A-=1 we then have:

I = int \ (sin^2x+sin^2x)/(cos^2 x + cos^2x) \ dx
\ \ = int \ (2sin^2x)/(2cos^2x) \ dx
\ \ = int \ tan^2x \ dx

We can now easily integrate by using the identity tan^2A+1=sec^2A to get:

I = int \ sec^2x -1 \ dx
\ \ = tan x -x + c