How do you integrate sin(x)tan(x)?

2 Answers
May 25, 2018

(sin(x))^3/3+C

Explanation:

Writing your integral in the form \int sin(x)^2/cos(x)dx and substitutet=sin(x)
then we get
dx=dt/cos(x)

May 25, 2018

The answer is =ln(|secx+tanx|)-sinx+C

Explanation:

The integral is

I=intsinxtanxdx=int(sin^2xdx)/cosx

=int(1-cos^2x)secxdx

=int(secx-cosx)dx

=intsecxdx-intcosxdx

=I_1+I_2

First calculate

I_1=intsecxdx

=int(secx(secx+tanx)dx)/(secx+tanx)

=int((sec^2x+secxtanx)dx)/(secx+tanx)

Let u=secx+tanx, =>, du=(secxtanx+sec^2x)dx

Therefore,

I_1=int(du)/u=lnu

=ln(secx+tanx)

Second calculate

I_2=intcosxdx=sinx

And finally,

I=ln(|secx+tanx|)-sinx+C