What's the integral of int tan(x)^3 dx?

1 Answer
Aug 8, 2016

inttan^3(x)dx=tan^2(x)/2+ln(abs(cos(x)))+C

Explanation:

Recall that the Pythagorean identity tells us that tan^2(x)=sec^2(x)-1. Thus we can say that:

inttan^3(x)dx=inttan(x)tan^2(x)dx=inttan(x)(sec^2(x)-1)dx

Now we can split up the integral:

=inttan(x)sec^2(x)dx-inttan(x)dx

For the first integral, let u=tan(x) so du=sec^2(x)dx.

=intudu-inttan(x)dx

=u^2/2-inttan(x)dx

=tan^2(x)/2-intsin(x)/cos(x)dx

Here, let v=cos(x) so dv=-sin(x)dx, so:

=tan^2(x)/2+int(-sin(x))/cos(x)dx

=tan^2(x)/2+int(dv)/v

=tan^2(x)/2+ln(absv)+C

=tan^2(x)/2+ln(abs(cos(x)))+C