What's the integral of int tan(x)^3 dx?
1 Answer
Aug 8, 2016
Explanation:
Recall that the Pythagorean identity tells us that
inttan^3(x)dx=inttan(x)tan^2(x)dx=inttan(x)(sec^2(x)-1)dx
Now we can split up the integral:
=inttan(x)sec^2(x)dx-inttan(x)dx
For the first integral, let
=intudu-inttan(x)dx
=u^2/2-inttan(x)dx
=tan^2(x)/2-intsin(x)/cos(x)dx
Here, let
=tan^2(x)/2+int(-sin(x))/cos(x)dx
=tan^2(x)/2+int(dv)/v
=tan^2(x)/2+ln(absv)+C
=tan^2(x)/2+ln(abs(cos(x)))+C