How do you find the indefinite integral of (sect+tant)?

1 Answer
Feb 5, 2018

The answer is =ln(|tant+sect|)ln(|cost|)+C

Explanation:

We calculate separately sectdt and tantdt

tantdt=sintdtcost

Perform the substitution

u=cost, , du=sintdt

tantdt=duu=ln(u)=ln(|cost|)

sect=sect(tant+sect)dttant+sect

Perform the substitution

u=tant+sect, , du=(sec2t+secttant)dt

sect=duu=lnu=ln(|tant+sect|)

Finally,

(sect+tant)dt=ln(|tant+sect|)ln(|cost|)+C