What is the integral of int sin^5x*cos^7x ? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Cesareo R. Aug 25, 2016 -(1/8cos^8 x-2/10 cos^10 x + 1/12 cos^12 x) + C Explanation: sin^5x*cos^7x = sin^4x cos^7x sinx = (1-cos^2 x)^2cos^7x sin x =(1-2cos^2x+cos^4 x)cos^7 x sin x =(cos^7x-2 cos^9 x+cos^11 x)sinx so int sin^5x*cos^7x dx = int (cos^7x-2 cos^9 x+cos^11 x)sinx dx =-(1/8cos^8 x-2/10 cos^10 x + 1/12 cos^12 x) + C or simplifying -1/480(27 - 28 cos(2 x) + 5 cos(4 x)) cos^8x Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 20799 views around the world You can reuse this answer Creative Commons License