What is the integral of #int sin^5x*cos^7x #? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Cesareo R. Aug 25, 2016 #-(1/8cos^8 x-2/10 cos^10 x + 1/12 cos^12 x) + C# Explanation: # sin^5x*cos^7x = sin^4x cos^7x sinx = (1-cos^2 x)^2cos^7x sin x# #=(1-2cos^2x+cos^4 x)cos^7 x sin x # #=(cos^7x-2 cos^9 x+cos^11 x)sinx# so #int sin^5x*cos^7x dx = int (cos^7x-2 cos^9 x+cos^11 x)sinx dx# #=-(1/8cos^8 x-2/10 cos^10 x + 1/12 cos^12 x) + C# or simplifying #-1/480(27 - 28 cos(2 x) + 5 cos(4 x)) cos^8x# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 20360 views around the world You can reuse this answer Creative Commons License