How do you find the antiderivative of (cosx)^2? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Shwetank Mauria Jul 27, 2016 intcos^2xdx=x/2+(sin2x)/4+c Explanation: To find antiderivative i.e. integral of cos^2x, we can use formula cos^2x=1/2(1+cos2x) intcos^2xdx=int[1/2(1+cos2x)]dx = int(1/2+(cos2x)/2)dx = 1/2[x+(sin2x)/2]+c = x/2+(sin2x)/4+c Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 19594 views around the world You can reuse this answer Creative Commons License