What is the integral of cos^2x * csc^3xcos2xcsc3x?

1 Answer
Oct 12, 2016

intcos^2x*csc^3xdx=-1/2cscxcotx+1/2ln(cscx-cotx)+ccos2xcsc3xdx=12cscxcotx+12ln(cscxcotx)+c

Explanation:

cos^2x*csc^3x=cos^2x*1/sin^3xcos2xcsc3x=cos2x1sin3x

= cos^2x/sin^2x*cscx=cot^2x*cscx=(csc^2x-1)*cscxcos2xsin2xcscx=cot2xcscx=(csc2x1)cscx ....(A)

Hence intcos^2x*csc^3xdx=int(csc^2x-1)*cscxdxcos2xcsc3xdx=(csc2x1)cscxdx

= intcsc^2xcscxdx-intcscxdxcsc2xcscxdxcscxdx

Let us process the them separately

First Part - We use integration by parts for intcsc^2xcscxdxcsc2xcscxdx, considering u=cscxu=cscx and v=-cotxv=cotx and then du=-cotxcscxdxdu=cotxcscxdx and dv=csc^2xdxdv=csc2xdx and integrating by parts, as intudv=uv-intvduudv=uvvdu we have

intcscx*csc^2xdx=-cscxcotx-int(-cotx)(-cotxcscxdx)cscxcsc2xdx=cscxcotx(cotx)(cotxcscxdx)

= -cscxcotx-intcot^2xcscxdxcscxcotxcot2xcscxdx ....(B)

Second Part intcscxdx=int(cscx(cscx-cotx))/((cscx-cotx))dxcscxdx=cscx(cscxcotx)(cscxcotx)dx

= int(csc²x-cscxcotx)/(cscx-cotx)dx

= int(-cscxcotx+csc²x)/(cscx-cotx)dx

As numerator is differential of denominator this is

= ln(cscx-cotx) ....(C)

Combining (B) and (C)

intcos^2x*csc^3xdx=-cscxcotx-intcot^2xcscxdx+ln(cscx-cotx)

Observe from (A) that cos^2x*csc^3x=cot^2xcscx.

Hence, this becomes

2intcos^2x*csc^3xdx=-cscxcotx+ln(cscx-cotx) and

intcos^2x*csc^3xdx=-1/2cscxcotx+1/2ln(cscx-cotx)+c