How do you find the antiderivative of cos(x)ln(sin(x))?

1 Answer
Aug 14, 2017

Use substitution and parts.

Explanation:

I=cosxln(sinx)dx

Let t=sinx so that dt=cosxdx and

I=lntdt

This can be integrated using parts

u=lnt so du=1tdt
dv=dt, so v=t

I=tlntt1tdt

=tlntdt

=tlntt+C

Reverse the substitution to finish with

cosxln(sinx)dx=sinxln(sinx)sinx+C