How do you find the antiderivative of sin2(x)cos2(x)dx?

1 Answer
Oct 22, 2016

sin2xcos2xdx=x8sin4x32

Explanation:

As sin2x=2sinxcosx, sinxcosx=12sin2x and

sin2xcos2x=14sin22x=14(12(1cos4x))=1cos4x8

Hence sin2xcos2xdx=1cos4x8dx

= x818cos4xdx

Let u=4x, then du=4dx

and cos4xdx=14cosudu=14sinu=14sin4x

Hence sin2xcos2xdx=x818×14sin4x=x8sin4x32