How do you find the antiderivative of sin2(x)cos2(x)dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Shwetank Mauria Oct 22, 2016 ∫sin2xcos2xdx=x8−sin4x32 Explanation: As sin2x=2sinxcosx, sinxcosx=12sin2x and sin2xcos2x=14sin22x=14(12(1−cos4x))=1−cos4x8 Hence ∫sin2xcos2xdx=∫1−cos4x8dx = x8−18∫cos4xdx Let u=4x, then du=4dx and ∫cos4xdx=14∫cosudu=14sinu=14sin4x Hence ∫sin2xcos2xdx=x8−18×14sin4x=x8−sin4x32 Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1354 views around the world You can reuse this answer Creative Commons License