What is int_(pi/8)^((11pi)/12) sin^3x-cosx*cotxdx?

1 Answer
May 13, 2018

The answer is =-0.426

Explanation:

First, calculate the indefinite integral

I=int(sin^3x-cosxcotx)dx

=intsin^3xdx-intcoscotxdx

=I_1-I_2

I_1=intsin^3xdx=intsin^2xsinxdx

=int(1-cos^2x)sinxdx

Let u=cosx, =>, du=-sinxdx

I_1=int-(1-u^2)du

=u^3/3-u

=1/3cos^3x-cosx

I_2=intcoscotxdx

=int(cos^2xdx)/(sinx)

=int((1-sin^2x)dx)/(sinx)

=intcscxdx-intsinxdx

=-ln(cscx+cotx)+cosx

Finally,

I=1/3cos^3x-2cosx+ln(|cscx+cotx|)+C

The definite integral is

int_(1/8pi) ^(11/12pi)(sin^3x-cosxcotx)dx

=[1/3cos^3x-2cosx+ln(|cscx+cotx|)]_(1/8pi)^(11/12pi)

=(1/3cos^3(11/12pi)-2cos(11/12pi)+ln(|csc(11/12pi)+cot(11/12pi)|))-(1/3cos^3(1/8pi)-2cos(1/8pi)+ln(|csc(1/8pi)+cot(1/8pi)|))

=-0.426