What is int 16sin^2 xcos^2 x dx 16sin2xcos2xdx?

2 Answers
Apr 10, 2018

int 16sin^2 xcos^2 x dx 16sin2xcos2xdx

=2int 2*(2sin xcos x )^2dx =22(2sinxcosx)2dx

=2int 2*sin ^2 2xdx =22sin22xdx

=2int (1-cos 4x)dx =2(1cos4x)dx

=2int dx-2intcos 4xdx =2dx2cos4xdx

=2x-2*(sin4x)/4+c =2x2sin4x4+c, where c is integration constant

=2x-1/2(sin4x)+c =2x12(sin4x)+c

Apr 10, 2018

int \ 16sin^2x cos^2x \ dx = 2x - 1/2sin4x + C

Explanation:

We want to evaluate the integral:

I = int \ 16sin^2x cos^2x \ dx

Using the identity:

sin 2A-= 2sinAcosA

We can write:

I = int \ 4*4*(sinxcosx)^2 \ dx
\ \ = int \ 4(2sinxcosx)^2 \ dx
\ \ = int \ 4(sin2x)^2 \ dx
\ \ = int \ 4 sin^2 2x \ dx

Next we use the identity:

cos^2x -= cos^2x-sin^2x => sin^2x -= 1/2(1-cos2x)

So we can write:

I = int \ 4 sin^2 2x \ dx
\ \ = int \ 4 (1/2(1-cos4x)) \ dx
\ \ = int \ 2-2cos4x \ dx

Which we can readily integrate:

I = 2x - (2sin4x)/4 + C
\ \ = 2x - 1/2sin4x + C