What is int 16sin^2 xcos^2 x dx ∫16sin2xcos2xdx?
2 Answers
int \ 16sin^2x cos^2x \ dx = 2x - 1/2sin4x + C
Explanation:
We want to evaluate the integral:
I = int \ 16sin^2x cos^2x \ dx
Using the identity:
sin 2A-= 2sinAcosA
We can write:
I = int \ 4*4*(sinxcosx)^2 \ dx
\ \ = int \ 4(2sinxcosx)^2 \ dx
\ \ = int \ 4(sin2x)^2 \ dx
\ \ = int \ 4 sin^2 2x \ dx
Next we use the identity:
cos^2x -= cos^2x-sin^2x => sin^2x -= 1/2(1-cos2x)
So we can write:
I = int \ 4 sin^2 2x \ dx
\ \ = int \ 4 (1/2(1-cos4x)) \ dx
\ \ = int \ 2-2cos4x \ dx
Which we can readily integrate:
I = 2x - (2sin4x)/4 + C
\ \ = 2x - 1/2sin4x + C