How do you find the integral of sin^2 (x/4)?

1 Answer
Jul 30, 2016

intsin^2(x/4)dx=x/2 - sin(x/2) + C

Explanation:

First, we apply the power reduction formula sin^2(x) = (1-cos(2x))/2

intsin^2(x/4)dx = int(1-cos(x/2))/2dx

Next, we make the substitution u = x/2. Then du = 1/2dx, so we get

int(1-cos(x/2))/2dx = int(1-cos(u))du

=int1du - intcos(u)du

=u - sin(u) + C

=x/2 - sin(x/2) + C