How do you evaluate the integral ∫tan2xsecx?
1 Answer
Feb 2, 2017
Explanation:
We see that:
∫tan2xsecxdx=∫sin2xcos2x1cosxdx=∫sin2xcosxdx=∫1−cos2xcosxdx
Splitting up the integral:
=∫secxdx−∫cosxdx
Both of these are standard integrals:
=ln(|secx+tanx|)−sinx+C