How do you find the integral of cos^3 x? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Jim H Oct 20, 2015 Use cos^3x = cos^2x cosx = (1-sin^2x) cosx = cosx - sin^2xcosx Explanation: So, int cos^3x dx = int cosx dx - int sin^2xcosx dx =sinx -sin^3x/3 +C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1239 views around the world You can reuse this answer Creative Commons License