What's the integral of tan5(x)dx?

2 Answers
Nov 2, 2015

14sec4xsec2x+ln|secx|

Explanation:

tan5xdx=sin5xcos5xdx

=sin4x(cosx)5sinxdx

=(1cos2x)2(cosx)5sinxdx

=(12cos2x+cos4x)(cosx)5sinxdx

=((cosx)52(cosx)3+(cosx)1)sinxdx

Now integrate by substitution with u=cosx

Alternatively, one could use the reduction formula for tannxdx. (If one has it memorized.)

Nov 2, 2015

Another method : )

tan5(x)dx=tan2(x)tan3(x)dx=(tan2(x)+11)tan3(x)dx

=(tan2+1)tan3(x)dxtan3(x)dx

=(tan2+1)tan3(x)dx(tan2(x)+1)tan(x)dxtan(x)dx (By the same method)

For the two first integral let's t=tan(x)

So dt=(1+tan2(x))dx

We have t3dttdttan(x)dx

[14t4][12t2]+[ln(|cos(x)|)]+C

(Don't forget absolute value, ln(f(x)) can't take negative argument !)

Substitute back

[14tan4(x)][12tan2(x)]+[ln(|cos(x)|)]+C