What is int_(pi/8)^((11pi)/12) x^2-cos^2x+xsinxdx11π12π8x2cos2x+xsinxdx?

1 Answer
Jun 29, 2016

approx 1010

Explanation:

int_(pi/8)^((11pi)/12)dx \ (x^2-cos^2x+xsinx)

using identity cos 2 z = 2 cos^2 z - 1 \implies cos ^2 z = (cos 2z + 1)/(2)

= int_(pi/8)^((11pi)/12)dx \ (x^2-(cos 2x + 1)/(2)+ color{red}{xsinx})

first 2 terms are trivial, we do the term in red using IBP, ie

int dx \ (u v') = uv - int dx \ (u' v)

Here

u = x, u' = 1
v' = sin x, v = -cos x

so we have
- x cos x - int dx \ (-cos x)
color{red}{= - x cos x + intdx \ (cos x)}

so the integral becomes

= [-x cos x] _(pi/8)^((11pi)/12) + int_(pi/8)^((11pi)/12)dx \ (x^2-(cos 2x + 1)/(2)+ cos x)

= [-x cos x + x^3/3-(sin 2x)/4 - x/2+ sin x ] _(pi/8)^((11pi)/12)

crunch it in calculator ....

approx 10