What is the integral of sin(2x)cos2(2x)dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer ali ergin Aug 5, 2016 ∫sin(2x)⋅cos2(2x)dx=−16cos3(2x)+C Explanation: ∫sin(2x)⋅cos2(2x)dx=? Substitute u=cos(2x) ; du=−2sin(2x)⋅dx ∫sin(2x)⋅cos2(2x)dx=−12∫u2⋅du So ;∫undu=1n+1un+1 Apply n=2 ∫sin(2x)⋅cos2(2x)dx=−12⋅13u3 Now ;undo substitution ∫sin(2x)⋅cos2(2x)dx=−16cos3(2x)+C Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 17114 views around the world You can reuse this answer Creative Commons License