How do I evaluate int_(1/6)^(1/2)[csc(pit)][cot(pit)] dt1216[csc(πt)][cot(πt)]dt?

1 Answer
Mar 14, 2015

For any integral, first try straightaway integration, then substitution. Do I know a function whose derivative is or involves csc time cot?

Yes, of course: d/(dx)(cscx)=-cscxcotxddx(cscx)=cscxcotx.
That's not quite what we're integrating, but we can fix that with a substitution:
Let u=pitu=πt. That makes du=pi dtdu=πdt and dt = (du)/pidt=duπ
When x=1/6x=16 (the lower limit of integration), then u=4*1/6=pi/6u=416=π6.
When x=1/2x=12 (the upper limit). then u=pi/2u=π2. So, substituting, our integral becomes:

int_(pi/6)^(pi/2)cscucotu (du)/pi=1/piint_(pi/6)^(pi/2)cscucotu duπ2π6cscucotuduπ=1ππ2π6cscucotudu

=1/pi(-cscu)]_(pi/6)^(pi/2)=1/pi(-csc(pi/2)+csc(pi/6))=1π(cscu)]π2π6=1π(csc(π2)+csc(π6))

-1/pi(-1+2)=1/pi1π(1+2)=1π