intcos^2xtan^3xdx = intcos^2x(sin^3x/cos^3x)dx ∫cos2xtan3xdx=∫cos2x(sin3xcos3x)dx
:. intcos^2xtan^3xdx = intsin^3x/cosxdx
We can perform this integral by a simple try substitution:
Let u=cosx => (du)/dx=-sinx , so -int ... du=int...sinxdx
:. intcos^2xtan^3xdx = intsin^2xsinx/cosxdx
:. intcos^2xtan^3xdx = int(1-cos^2x)sinx/cosxdx
Then if we perform the substitution we get:
intcos^2xtan^3xdx = int(1-u^2)(-1/u)du
:. intcos^2xtan^3xdx = int(u^2-1)/udu
:. intcos^2xtan^3xdx = intu-1/udu
:. intcos^2xtan^3xdx = 1/2u^2-ln|u| + C
:. intcos^2xtan^3xdx = 1/2cosx^2-ln|cosx| + C