What is the Integral of (tan(x))^4(tan(x))4? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Ratnaker Mehta Jan 13, 2017 tan^3x-tanx+x+Ctan3x−tanx+x+C. Explanation: Let I=int(tanx)^4dx=inttan^4xdxI=∫(tanx)4dx=∫tan4xdx. :. I=inttan^2xtan^2xdx =inttan^2x(sec^2x-1)dx =inttan^2xsec^2xdx-inttan^2xdx =J-int(sec^2x-1)dx =J-intsec^2xdx+int1dx =J-tanx+x, where, J=inttan^2xsec^2xdx To find J," we subst. "y=tanx," so that, "dy=sec^2xdx. :. J=inty^2dy=y^3/3=1/3tan^3x. Finally, we have, I=1/3tan^3x-tanx+x+C. Enjoy Maths.! Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 3616 views around the world You can reuse this answer Creative Commons License