What is int xarctan(x^2) dx?

1 Answer
Jun 9, 2016

intxarctan(x^2)dx=1/2x^2arctan(x^2)-1/4ln(1+x^4)+C

Explanation:

First, we can perform substitution with the x^2 and x,

Let t=x^2 so that dt=2xdx.

intxarctan(x^2)=1/2int2xarctan(x^2)dx=1/2intarctan(t)dt

Now, we will use integration by parts. Don't be fooled by the fact that there's only the arctangent function in the integrand--the dv value can be 1.

As a reminder, integration by parts takes the form:

intudv=uv-intvdu

Here, u=arctan(t) and dv=dt. These imply that du=1/(1+t^2)dt and v=t.

Thus

1/2intarctan(t)dt=1/2[tarctan(t)-intt/(1+t^2)dt]

For this second integral, use substitution again.

Let s=1+t^2 and ds=2tdt.

intt/(1+t^2)dt=1/2int(2t)/(1+t^2)dt=1/2int1/sds=1/2ln(abss)+C

Thus,

1/2intarctan(t)dt=1/2[tarctan(t)-1/2ln(abss)]+C

Since s=1+t^2,

1/2intarctan(t)dt=1/2tarctan(t)-1/4ln(abs(1+t^2))+C

Now since t=x^2:

1/2intarctan(t)dt=1/2x^2arctan(x^2)-1/4ln(1+x^4)+C

And 1/2intarctan(t)dt=intxarctan(x^2)dx, so

intxarctan(x^2)dx=1/2x^2arctan(x^2)-1/4ln(1+x^4)+C