How do you integrate 1/(1+tanx) dx?
3 Answers
Use the substitution
Explanation:
Let
I=int1/(1+tanx)dx
Apply the substitution
I=int1/((1+u^2)(1+u))du
Apply partial fraction decomposition:
I=1/2int((1-u)/(1+u^2)+1/(1+u))du
Rearrange:
I=1/2int(1/(1+u^2)-1/2(2u)/(1+u^2)+1/(1+u))du
Integrate term by term:
I=1/2(tan^(-1)u-1/2ln(1+u^2)+ln(1+u))+C
Reverse the substitution:
I=1/2(x-ln(secx)+ln(1+tanx))+C
Simplify:
I=1/2(x+ln(sinx+cosx))+C
Explanation:
We want to find
We start by substituting
So
Now we perform a partial fraction decomposition on the integrand
Letting
Letting
Letting
So,
and
Reversing for
Explanation:
Let,