How do you integrate 1/(1+tanx) dx?

3 Answers
May 18, 2018

Use the substitution tanx=u.

Explanation:

Let

I=int1/(1+tanx)dx

Apply the substitution tanx=u:

I=int1/((1+u^2)(1+u))du

Apply partial fraction decomposition:

I=1/2int((1-u)/(1+u^2)+1/(1+u))du

Rearrange:

I=1/2int(1/(1+u^2)-1/2(2u)/(1+u^2)+1/(1+u))du

Integrate term by term:

I=1/2(tan^(-1)u-1/2ln(1+u^2)+ln(1+u))+C

Reverse the substitution:

I=1/2(x-ln(secx)+ln(1+tanx))+C

Simplify:

I=1/2(x+ln(sinx+cosx))+C

May 19, 2018

int1/(1+tanx)"d"x=1/4(2x+ln(1+sin2x))+"c"

Explanation:

We want to find int1/(1+tanx)"d"x.

We start by substituting u=tanx and "d"u=sec^2x"d"x=(1+tan^2x)"d"x=(1+u^2)"d"x

So

int1/(1+tanx)"d"x=int1/((1+u)(1+u^2))"d"u

Now we perform a partial fraction decomposition on the integrand

1/((1+u)(1+u^2))=A/(1+u)+(Bu+C)/(1+u^2)

1=A(1+u^2)+(Bu+C)(1+u)

Letting u=-1 gives

1=A(1+(-1)^2)=2ArArrA=1/2

Letting u=0 gives

1=1/2(1+0)+CrArrC=1/2

Letting u=1 gives

1=1/2(2)+(B+1/2)(2)=2B+2rArrB=-1/2

So,

1/((1+u)(1+u^2))=1/2(1/(1+u)+(1-u)/(1+u^2))

and

int1/((1+u)(1+u^2))"d"x=

1/2(int1/(1+u)"d"u+int1/(1+u^2)"d"u-intu/(1+u^2)"d"u)=

1/2(lnabs(1+u)+arctanu-1/2ln(1+u^2))+"c"

Reversing for u=tanx gives

1/4(2lnabs(1+tanx)+2arctan(tanx)+ln(1/(1+tan^2x)))+"c"

=1/4(2x+ln(cos^2x+2sinxcosx+sin^2x))+"c"

=1/4(2x+ln(1+sin2x))+"c"

May 19, 2018

1/2{x+ln|(cosx+sinx)|}+C.

Explanation:

Let, I=int1/(1+tanx)dx=intcosx/(cosx+sinx)dx.

:. I=1/2int(2cosx)/(cosx+sinx)dx,

=1/2int{(cosx+sinx)+(cosx-sinx)}/(cosx+sinx)dx,

=1/2int{(cosx+sinx)/(cosx+sinx)+(cosx-sinx)/(cosx+sinx)}dx,

=1/2int{1+(d/dx(cosx+sinx))/(cosx+sinx)dx},

rArr I=1/2{x+ln|(cosx+sinx)|}+C.