What is the Integral of tan^2 x sec^4 x dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer maganbhai P. May 27, 2018 I=tan^3x/3+tan^5x/5+c Explanation: We know that, (1)color(red)(int[f(x)]^nd/(dx)(f(x))dx=[f(x)]^(n+1)/(n+1)+c, where,(n!=-1,f(x)>0 and f'(x)!=0) We have, I=inttan^2xsec^4xdx =int tan^2x(sec^2x)sec^2xdx =inttan^2x(1+tan^2x)sec^2xdx =int tan^2xsec^2xdx+inttan^4xsec^2xdx =int(tanx)^2d/(dx)(tanx)dx+int(tanx)^4d/(dx)(tanx)dx =(tanx)^3/3+(tanx)^5/5+c...to Apply(1) =tan^3x/3+tan^5x/5+c Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 34742 views around the world You can reuse this answer Creative Commons License