How do you integrate tan(x)? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Euan S. Jul 19, 2016 int tanx dx = -ln(cosx) + C Explanation: tanx = sinx/cosx int sinx/cosx dx Let u = cosx implies du = -sinxdx therefore -int (du)/u = -ln(u) + C therefore int tanx dx = -ln(cosx) + C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 20068 views around the world You can reuse this answer Creative Commons License