How do you integrate int (2x-5)/(x^2+2x+2)dx?

1 Answer
Mar 24, 2018

I=ln|x^2+2x+2|-7tan^-1(x+1)+c

Explanation:

We know that

color(red)((1) int(f^'(x))/(f(x))dx=ln|f(x)|+c

color(red)((2)int1/(U^2+1)dx=tan^-1U+c

Now

I=int(2x-5)/(x^2+2x+2)dx

=int(2x+2-7)/(x^2+2x+2)dx

=int(2x+2)/(x^2+2x+2)dx-int(7)/(x^2+2x+2)dx

=int(d/(dx)(x^2+2x+2))/(x^2+2x+2)dx-7int1/(x^2+2x+1+1)dx

I=int(d/(dx)(x^2+2x+2))/(x^2+2x+2)dx-7int1/((x+1)^2+1)dx

Using color(red)((1) and (2), we get

I=ln|x^2+2x+2|-7tan^-1(x+1)+c