How do you integrate int (2x-5)/(x^2+2x+2)dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer maganbhai P. Mar 24, 2018 I=ln|x^2+2x+2|-7tan^-1(x+1)+c Explanation: We know that color(red)((1) int(f^'(x))/(f(x))dx=ln|f(x)|+c color(red)((2)int1/(U^2+1)dx=tan^-1U+c Now I=int(2x-5)/(x^2+2x+2)dx =int(2x+2-7)/(x^2+2x+2)dx =int(2x+2)/(x^2+2x+2)dx-int(7)/(x^2+2x+2)dx =int(d/(dx)(x^2+2x+2))/(x^2+2x+2)dx-7int1/(x^2+2x+1+1)dx I=int(d/(dx)(x^2+2x+2))/(x^2+2x+2)dx-7int1/((x+1)^2+1)dx Using color(red)((1) and (2), we get I=ln|x^2+2x+2|-7tan^-1(x+1)+c Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 14646 views around the world You can reuse this answer Creative Commons License