How do you integrate sin32xdx?

2 Answers
Apr 3, 2015

sin3(2x)dx

I can't integrate straightaway. There's no obvious substitution and no obvious parts.

What do I know about Sine?
ddx(sinx)=cosx , sinxdx=cosx

That's about if for calculus. From trig, there's more:

sin2(2x)+cos2(2x)x=1

so sin2(2x)=1cos2(2x) and I know the derivative of cos is -sin, so maybe a substitution after all. TRY IT.
(I know it will work by many years of experience. A student just has to try something and see if it helps. (So do I, for higher level problems.)

Try it:

sin3(2x)dx=sin2(2x)sin(2x)dx

=(1cos2(2x))sin(2x)dx=[sin(2x)cos2(2x)sin(2x)]dx

Now I should be able to integrate each of these two terms:

sin(2x)dx=12cos(2x)

and cos2(2x)sin(2x)dx, by letting u=cos(2x) we can get

cos2(2x)sin(2x)dx=16cos3(2x)

So we get:

12cos(2x)+16cos3(2x)+C

Or see the other solution I'll post.

Apr 3, 2015

sin3(2x)dx=(sin(2x))3dx=(2sinxcosx)3dx, So

sin3(2x)dx=8sin3xcos3xdx

Now either pull off sin2x and write the integrand as (1cos2x)cos3xsinxdx (So we have powers of sine times differential of sine) or vice versa (details follow)

8sin3xcos3xdx=8sin3x(cos2x)cosxdx (Do you see where we're going?)

=8sin3x(1sin2x)cosxdx See it yet?

=8(sin3xsin5x)cosxdx

=8(sin3x)cosxdx(sin5x)cosxdx

=8(14sin4x16sin6x)+C

=2sin4x43sin6x+C