How do you find the integral of cos6(x)?

1 Answer
Feb 18, 2017

cos6xdx=sinxcos5x6+sinxcos3x6+25(sinxcosx)+25x+C

Explanation:

Integrate by parts:

cos6xdx=cos5xcosxdx=cos5xd(sinx)

cos6xdx=sinxcos5x+5cos4xsin2xdx

cos6xdx=sinxcos5x+5cos4x(1cos2x)dx

cos6xdx=sinxcos5x+5cos4x5cos6xdx

As the integral is on both sides we can solve for it:

6cos6xdx=sinxcos5x+5cos4xdx

cos6xdx=sinxcos5x6+56cos4xdx

We can use the same method to reduce the degree of cosx again:

cos4xdx=cos3xd(sinx)

cos4xdx=sinxcos3x+4cos2xsin2xdx

cos4xdx=sinxcos3x+4cos2xdx4cos4xdx

cos4xdx=sinxcos3x5+45cos2xdx

And again:

cos2xdx=cosxd(sinx)

cos2xdx=sinxcosx+sin2xdx

cos2xdx=sinxcosx+dxcos2xdx

cos2xdx=sinxcosx2+12x+C

Putting it all together we have:

cos6xdx=sinxcos5x6+sinxcos3x6+25(sinxcosx)+25x+C