Integrate by parts:
∫cos6xdx=∫cos5xcosxdx=∫cos5xd(sinx)
∫cos6xdx=sinxcos5x+5∫cos4xsin2xdx
∫cos6xdx=sinxcos5x+5∫cos4x(1−cos2x)dx
∫cos6xdx=sinxcos5x+5∫cos4x−5∫cos6xdx
As the integral is on both sides we can solve for it:
6∫cos6xdx=sinxcos5x+5∫cos4xdx
∫cos6xdx=sinxcos5x6+56∫cos4xdx
We can use the same method to reduce the degree of cosx again:
∫cos4xdx=∫cos3xd(sinx)
∫cos4xdx=sinxcos3x+4∫cos2xsin2xdx
∫cos4xdx=sinxcos3x+4∫cos2xdx−4∫cos4xdx
∫cos4xdx=sinxcos3x5+45∫cos2xdx
And again:
∫cos2xdx=∫cosxd(sinx)
∫cos2xdx=sinxcosx+∫sin2xdx
∫cos2xdx=sinxcosx+∫dx−∫cos2xdx
∫cos2xdx=sinxcosx2+12x+C
Putting it all together we have:
∫cos6xdx=sinxcos5x6+sinxcos3x6+25(sinxcosx)+25x+C