What is the integral of int sin^3 3x cos 3x dxsin33xcos3xdx?

1 Answer
Jan 23, 2016

intsin^3(3x)cos(3x)dx=frac{sin^4(3x)}{12}+csin3(3x)cos(3x)dx=sin4(3x)12+c

Explanation:

Take the given equation intsin^3(3x)cos3xdxsin3(3x)cos3xdx
Take the function sin(3x)=tsin(3x)=t
Now differentiate with respect to tt on both sides of this
\frac{d}{dt}(sin3x)=1\implies3cos3x*\frac{dx}{dt}=1\impliescos3xdx=dt/3ddt(sin3x)=13cos3xdxdt=1cos3xdx=dt3

Substituting the given above values for the main equation, we get
intt^3/3dtt33dt
This looks easy. Let's directly integrate.
intt^3/3dt=t^4/(3*4)+c=t^4/12+ct33dt=t434+c=t412+c

That's what you want, right? Oh, substitution? That's there up in the answer section.