What is intsec(2x)tan(2x) dxsec(2x)tan(2x)dx?

1 Answer
Dec 31, 2015

1/2 sec(2x) + C12sec(2x)+C

Explanation:

int sec(2x)tan(2x) dxsec(2x)tan(2x)dx
Let u = 2xu=2x
du = 2dxdu=2dx
(du/2)=dx(du2)=dx

The integral is rewritten as

int sec(u)tan(u) (du)/2sec(u)tan(u)du2
=1/2 int sec(u)tan(u) du=12sec(u)tan(u)du

=1/2 sec(u) + C=12sec(u)+C

Substituting back for uu we get 1/2 sec(2x) + C12sec(2x)+C