How do you integrate xsin2xdx?

1 Answer
Jan 17, 2017

xsin2xdx=x2414xsin2x18cos2x+C

Explanation:

Use the identity:

sin2x=1cos2x2

xsin2xdx=x(1cos2x2)dx=12xdx12xcos2xdx

The first integral is:

xdx=x22+C1

the second can be integrated by part:

xcos2xdx=12xd(sin2x)=12xsin2x12sin2xdx=12xsin2x+14cos2x+C2

Putting it together:

xsin2xdx=x2414xsin2x18cos2x+C