What is the Integral of tan2(x)sec(x)?
1 Answer
Feb 3, 2017
Explanation:
I=∫tan2(x)sec(x)dx
Let
I=∫(sec2(x)−1)sec(x)dx=∫sec3(x)dx−∫sec(x)dx
The integral of
I=∫sec3(x)dx−ln(|sec(x)+tan(x)|)
The integral of
I=(12sec(x)tan(x)+12ln(|sec(x)+tan(x)|))−ln(|sec(x)+tan(x)|)
I=12sec(x)tan(x)−12ln(|sec(x)+tan(x)|)+C