How do you find the antiderivative of ln(cosx)tanxdxln(cosx)tanxdx?
1 Answer
Jun 4, 2016
Explanation:
We wish to find:
intln(cosx)tanxdx∫ln(cosx)tanxdx
Use substitution:
If
Thus,
intln(cosx)tanxdx=-intln(cosx)(-tanx)dx=-intudu∫ln(cosx)tanxdx=−∫ln(cosx)(−tanx)dx=−∫udu
This becomes
-u^2/2+C=-(ln(cosx))^2/2+C−u22+C=−(ln(cosx))22+C