How do you find the antiderivative of ln(cosx)tanxdxln(cosx)tanxdx?

1 Answer
Jun 4, 2016

-(ln(cosx))^2/2+C(ln(cosx))22+C

Explanation:

We wish to find:

intln(cosx)tanxdxln(cosx)tanxdx

Use substitution:

If u=ln(cosx)u=ln(cosx), then du=(-sinx)/cosxdx=-tanxdxdu=sinxcosxdx=tanxdx.

Thus,

intln(cosx)tanxdx=-intln(cosx)(-tanx)dx=-intuduln(cosx)tanxdx=ln(cosx)(tanx)dx=udu

This becomes

-u^2/2+C=-(ln(cosx))^2/2+Cu22+C=(ln(cosx))22+C