What is the integral of #int tan^2(x)sec^4(x)#?
1 Answer
Aug 11, 2016
Explanation:
Recall that through the Pythagorean identity we know that
#I=inttan^2(x)sec^4(x)dx=inttan^2(x)sec^2(x)sec^2(x)dx#
Rewriting one:
#I=inttan^2(x)(tan^2(x)+1)sec^2(x)dx#
Keeping the other
#I=int(tan^4(x)+tan^2(x))sec^2(x)dx#
Now, let
#I=int(u^4+u^2)du#
#I=u^5/5+u^3/3+C#
#I=tan^5(x)/5+tan^3(x)/3+C#