How do you integrate (tanx)^5*(secx)^4dx?
1 Answer
Nov 26, 2016
Explanation:
Writing this as:
inttan^5xsec^4xdx
Rewriting to leave all
=inttan^5xsec^2xsec^2xdx
=inttan^5x(tan^2x+1)sec^2xdx
Letting
=intu^5(u^2+1)du
=intu^7du+intu^5du
=u^8/8+u^6/6+C
=tan^8x/8+tan^6x/6+C