What's the integral of int secx tanx dxsecxtanxdx?

3 Answers
Mar 13, 2018

int secx*tanx*dx=secx+Csecxtanxdx=secx+C

Explanation:

int secx*tanx*dxsecxtanxdx

=int 1/cosx*sinx/cosx*dx1cosxsinxcosxdx

=int sinx/(cosx)^2*dxsinx(cosx)2dx

=1/cosx +C1cosx+C

=secx+Csecx+C

Mar 13, 2018

The answer is =secx +C=secx+C

Explanation:

Perform the substitution

u=secxu=secx

du=(1/cosx)'=-1/cos^2x*-sinxdx=sinx/cos^2xdx

=tanxsecxdx

Therefore,

inttanxsecxdx=intdu=u

=secx+C

Method-1:

\int sec x\tan x\ dx

=\int d(sec x)

=\sec x+C

Method-2:

\int sec x\tan x\ dx

=\int \frac{1}{\cos x}\frac{\sin x}{\cos x}\ dx

=\int \frac{\sin x}{\cos^2 x}\ dx

=\int \frac{-d(\cos x)}{\cos^2 x}

=-\int(\cos x)^{-2}d(\cos x)

=-\frac{(\cosx)^{-2+1}}{-2+1}+C

=(\cos x)^{-1}+C

=\sec x+C