What is int csc^4(x) cot^6(x) dx ∫csc4(x)cot6(x)dx?
1 Answer
Explanation:
Notice that when we have
d/dx(cot(x))=-csc^2(x)ddx(cot(x))=−csc2(x)
Thus, if we let
However, we have
1+cot^2(x)=csc^2(x)1+cot2(x)=csc2(x)
Thus, the integral becomes:
intcsc^4(x)cot^6(x)dx=intcsc^2(x)csc^2(x)cot^6(x)dx∫csc4(x)cot6(x)dx=∫csc2(x)csc2(x)cot6(x)dx
=intcsc^2(x)[(1+cot^2(x))(cot^6(x)]dx=∫csc2(x)[(1+cot2(x))(cot6(x)]dx
=intcsc^2(x)[cot^6(x)+cot^8(x)]dx=∫csc2(x)[cot6(x)+cot8(x)]dx
Now, in order to get a
=-int(-csc^2(x))[cot^6(x)+cot^8(x)]dx=−∫(−csc2(x))[cot6(x)+cot8(x)]dx
Now substitute, since we have out
=-int(u^6+u^8)du=−∫(u6+u8)du
Integrating term by term, this gives us
=-(u^7/7+u^9/9)+C=−(u77+u99)+C
=-cot^9(x)/9-cot^7(x)/7+C=−cot9(x)9−cot7(x)7+C