How do you find the antiderivative of int sinx(cosx)^(3/2) dx∫sinx(cosx)32dx?
1 Answer
Jan 14, 2017
Explanation:
Since we don't want to have to deal with the
So, we need to modify our integral just a little:
intsinx(cosx)^(3/2)dx=-int(cosx)^(3/2)(-sinxcolor(white).dx)=-intu^(3/2)color(white).du∫sinx(cosx)32dx=−∫(cosx)32(−sinx.dx)=−∫u32.du
Integrate this using the rule
=-u^(5/2)/(5/2)=-2/5u^(5/2)=-2/5(cosx)^(5/2)+C=−u5252=−25u52=−25(cosx)52+C