How do I evaluate the indefinite integral sin(3x)sin(6x)dx ?

1 Answer
Aug 13, 2014

It can have two solutions

=sin3x6sin9x18+c, where c is a constant OR

=29sin3(3x)+c, where c is a constant

Explanation

=sin(3x)sin(6x)dx

From trigonometric identities,

sinAsinB=12(cos(AB)cos(A+B))

Similarly, for the given problem,

sin(3x)sin(6x)=12(cos(3x)cos9x)

As, cos(A)=cos(A)

sin(3x)sin(6x)=12(cos3xcos9x)

integrating both sides,

sin(3x)sin(6x)dx=12(cos3xcos9x)dx

=12(cos3x)dx12(cos9x)dx

=12sin3x312sin9x9+c, where c is a constant

=sin3x6sin9x18+c, where c is a constant

Another Method :

=sin(3x)sin(6x)dx

=sin(3x)2sin(3x)cos(3x)dx

=2sin2(3x)cos(3x)dx

let's assume sin(3x)=t, then 3cos(3x)dx=dt

therefore,

=2t23dt

=29t3+c, where c is a constant

=29sin3(3x)+c, where c is a constant