How do I evaluate the indefinite integral ∫sin(3x)⋅sin(6x)dx ?
1 Answer
It can have two solutions
=sin3x6−sin9x18+c , wherec is a constant OR
=29sin3(3x)+c , wherec is a constantExplanation
=∫sin(3x)⋅sin(6x)dx From trigonometric identities,
sinAsinB=12(cos(A−B)−cos(A+B)) Similarly, for the given problem,
sin(3x)⋅sin(6x)=12(cos(−3x)−cos9x) As,
cos(−A)=cos(A)
sin(3x)⋅sin(6x)=12(cos3x−cos9x) integrating both sides,
∫sin(3x)⋅sin(6x)dx=∫12(cos3x−cos9x)dx
=12∫(cos3x)dx−12∫(cos9x)dx
=12sin3x3−12sin9x9+c , wherec is a constant
=sin3x6−sin9x18+c , wherec is a constantAnother Method :
=∫sin(3x)⋅sin(6x)dx
=∫sin(3x)⋅2sin(3x)cos(3x)dx
=∫2sin2(3x)cos(3x)dx let's assume
sin(3x)=t , then3cos(3x)dx=dt therefore,
=2∫t23⋅dt
=29⋅t3+c , wherec is a constant
=29sin3(3x)+c , wherec is a constant