How do you integrate int sin^2(x/5)*cos^3(x/5)?

1 Answer
May 17, 2016

5/3sin^3(x/5)-sin^5(x/5)+C

Explanation:

We have

intsin^2(x/5)cos^3(x/5)dx

intsin^2(x/5)cos^2(x/5)cos(x/5)dx

Use cos^2(x) = 1-sin^2(x) to re write the expression as:

intsin^2(x/5)(1-sin^2(x/5))cos(x/5)dx

=int(sin^2(x/5)-sin^4(x/5))cos(x/5)dx

Now apply the substitution:
u = sin(x/5)
->du = 1/5cos(x)dx

Which will give us the integral:

5intu^2-u^4du

=5(u^3/3-u^5/5)+C

Now reverse the substitution to get:

5/3sin^3(x/5)-sin^5(x/5)+C