What is the antiderivative of x(sinx)2? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer MetaPhysik Jan 4, 2018 14x2−14xsin2x+18cos2x Explanation: I=∫xsin2xdx cos2x=cos2−sin2x,⇒sin2x=1−cos2x2 I=∫xsin2xdx=∫x(1−cos2x)2dx I=12∫xdx−12∫xcos2xdx Let evaluate the second part first. Let u=2x⇒du=2dx and perform integration by parts 12∫xcos2xdx=18∫ucosudu=18(usinu−∫sinudu) =18(usinu+cosu) I=14x2−18(2xsin2x+cos2x) I=14x2−14xsin2x+18cos2x Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 2820 views around the world You can reuse this answer Creative Commons License